Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Front Mol Biosci ; 11: 1253983, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560518

RESUMEN

Tuberculous meningitis (TBM) is a severe form of tuberculosis with high neuro-morbidity and mortality, especially among the paediatric population (aged ≤12 years). Little is known of the associated metabolic changes. This study aimed to identify characteristic metabolic markers that differentiate severe cases of paediatric TBM from controls, through non-invasive urine collection. Urine samples selected for this study were from two paediatric groups. Group 1: controls (n = 44): children without meningitis, no neurological symptoms and from the same geographical region as group 2. Group 2: TBM cases (n = 13): collected from paediatric patients that were admitted to Tygerberg Hospital in South Africa on the suspicion of TBM, mostly severely ill; with a later confirmation of TBM. Untargeted 1H NMR-based metabolomics data of urine were generated, followed by statistical analyses via MetaboAnalyst (v5.0), and the identification of important metabolites. Twenty nine urinary metabolites were identified as characteristic of advanced TBM and categorized in terms of six dysregulated metabolic pathways: 1) upregulated tryptophan catabolism linked to an altered vitamin B metabolism; 2) perturbation of amino acid metabolism; 3) increased energy production-metabolic burst; 4) disrupted gut microbiota metabolism; 5) ketoacidosis; 6) increased nitrogen excretion. We also provide original biological insights into this biosignature of urinary metabolites that can be used to characterize paediatric TBM patients in a South African cohort.

2.
J Cannabis Res ; 6(1): 14, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38494488

RESUMEN

BACKGROUND: The treatment of diverse diseases using plant-derived products is actively encouraged. In the past few years, cannabidiol (CBD) has emerged as a potent cannabis-derived drug capable of managing various debilitating neurological infections, diseases, and their associated complications. CBD has demonstrated anti-inflammatory and curative effects in neuropathological conditions, and it exhibits therapeutic, apoptotic, anxiolytic, and neuroprotective properties. However, more information on the reactions and ability of CBD to alleviate brain-related disorders and the neuroinflammation that accompanies them is needed. MAIN BODY: This narrative review deliberates on the therapeutic and remedial prospects of CBD with an emphasis on neurological and neuropsychiatric disorders. An extensive literature search followed several scoping searches on available online databases such as PubMed, Web of Science, and Scopus with the main keywords: CBD, pro-inflammatory cytokines, and cannabinoids. After a purposive screening of the retrieved papers, 170 (41%) of the articles (published in English) aligned with the objective of this study and retained for inclusion. CONCLUSION: CBD is an antagonist against pro-inflammatory cytokines and the cytokine storm associated with neurological infections/disorders. CBD regulates adenosine/oxidative stress and aids the downregulation of TNF-α, restoration of BDNF mRNA expression, and recovery of serotonin levels. Thus, CBD is involved in immune suppression and anti-inflammation. Understanding the metabolites associated with response to CBD is imperative to understand the phenotype. We propose that metabolomics will be the next scientific frontier that will reveal novel information on CBD's therapeutic tendencies in neurological/neuropsychiatric disorders.

3.
Metabolomics ; 20(2): 33, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427142

RESUMEN

INTRODUCTION:  Because cerebrospinal fluid (CSF) samples are difficult to obtain for paediatric HIV, few studies have attempted to profile neurometabolic dysregulation. AIM AND OBJECTIVE: The aim of this exploratory study was to profile the neurometabolic state of CSF from a South African paediatric cohort using GCxGC-TOF/MS. The study included 54 paediatric cases (< 12 years), 42 HIV-negative controls and 12 HIV-positive individuals. RESULTS: The results revealed distinct metabolic alterations in the HIV-infected cohort. In the PLS-DA model, 18 metabolites significantly discriminated between HIV-infected and control groups. In addition, fold-change analysis, Mann-Whitney U tests, and effect size measurements verified these findings. Notably, lactose, myo-inositol, and glycerol, although not significant by p-value alone, demonstrated practical significance based on the effect size. CONCLUSIONS: This study provided valuable insights on the impact of HIV on metabolic pathways, including damage to the gut and blood-brain barrier, disruption of bioenergetics processes, gliosis, and a potential marker for antiretroviral therapy. Nevertheless, the study recognized certain constraints, notably a limited sample size and the absence of a validation cohort. Despite these limitations, the rarity of the study's focus on paediatric HIV research underscores the significance and unique contributions of its findings.


Asunto(s)
Infecciones por VIH , Metabolómica , Humanos , Niño , Sudáfrica , Metaboloma
4.
Gut Pathog ; 16(1): 14, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475868

RESUMEN

BACKGROUND: The pathogenesis of tuberculous meningitis (TBM) involves infection by Mycobacterium tuberculosis in the meninges and brain. However, recent studies have shown that the immune response and inflammatory processes triggered by TBM can have significant effects on gut microbiota. Disruptions in the gut microbiome have been linked to various systemic consequences, including altered immunity and metabolic dysregulation. Inflammation caused by TBM, antibiotic treatment, and changes in host immunity can all influence the composition of gut microbes. This complex relationship between TBM and the gut microbiome is of great importance in clinical settings. To gain a deeper understanding of the intricate interactions between TBM and the gut microbiome, we report innovative insights into the development of the disease in response to treatment. Ultimately, this could lead to improved outcomes, management strategies and quality of life for individuals affected by TBM. METHOD: We used a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach to investigate metabolites associated with gut metabolism in paediatric participants by analysing the urine samples collected from a control group (n = 40), and an experimental group (n = 35) with confirmed TBM, which were subdivided into TBM stage 1 (n = 8), stage 2 (n = 11) and stage 3 (n = 16). FINDINGS: Our metabolomics investigation showed that, of the 78 initially selected compounds of microbiome origin, eight unique urinary metabolites were identified: 2-methylbutyrlglycine, 3-hydroxypropionic acid, 3-methylcrotonylglycine, 4-hydroxyhippuric acid, 5-hydroxyindoleacetic acid, 5-hydroxyhexanoic acid, isobutyrylglycine, and phenylacetylglutamine as urinary markers of dysbiosis in TBM. CONCLUSION: These results - which are supported by previous urinary studies of tuberculosis - highlight the importance of gut metabolism and of identifying corresponding microbial metabolites as novel points for the foundation of improved management of TBM patients.

5.
Viruses ; 16(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38400088

RESUMEN

HIV-exposed, uninfected (HEU) children present with suboptimal growth and a greater susceptibility to infection in early life when compared to HIV-unexposed, uninfected (HUU) children. The reasons for these findings are poorly understood. We used a metabolomics approach to investigate the metabolic differences between pregnant women living with HIV (PWLWH) and their HEU infants compared to the uninfected and unexposed controls. Untargeted metabolomic profiling was performed using 1H-NMR spectroscopy on maternal plasma at 28 weeks' gestation and infant plasma at birth, 6/10 weeks, and 6 months. PWLWH were older but, apart from a larger 28 week mid-upper-arm circumference, anthropometrically similar to the controls. At all the time points, HEU infants had a significantly reduced growth compared to HUU infants. PWLWH had lower plasma 3-hydroxybutyric acid, acetoacetic acid, and acetic acid levels. In infants at birth, threonine and myo-inositol levels were lower in the HEU group while formic acid levels were higher. At 6/10 weeks, betaine and tyrosine levels were lower in the HEU group. Finally, at six months, 3-hydroxyisobutyric acid levels were lower while glycine levels were higher in the HEU infants. The NMR analysis has provided preliminary information indicating differences between HEU and HUU infants' plasma metabolites involved in energy utilization, growth, and protection from infection.


Asunto(s)
Infecciones por VIH , Lactante , Recién Nacido , Niño , Humanos , Femenino , Embarazo , Infecciones por VIH/prevención & control , Madres , Betaína , Metabolómica
6.
Front Physiol ; 14: 1117687, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215177

RESUMEN

Introduction: Extreme endurance events may result in numerous adverse metabolic, immunologic, and physiological perturbations that may diminish athletic performance and adversely affect the overall health status of an athlete, especially in the absence of sufficient recovery. A comprehensive understanding of the post-marathon recovering metabolome, may aid in the identification of new biomarkers associated with marathon-induced stress, recovery, and adaptation, which can facilitate the development of improved training and recovery programs and personalized monitoring of athletic health/recovery/performance. Nevertheless, an untargeted, multi-disciplinary elucidation of the complex underlying biochemical mechanisms involved in recovery after such an endurance event is yet to be demonstrated. Methods: This investigation employed an untargeted proton nuclear magnetic resonance metabolomics approach to characterize the post-marathon recovering metabolome by systematically comparing the pre-, immediately post, 24, and 48 h post-marathon serum metabolite profiles of 15 athletes. Results and Discussion: A total of 26 metabolites were identified to fluctuate significantly among post-marathon and recovery time points and were mainly attributed to the recovery of adenosine triphosphate, redox balance and glycogen stores, amino acid oxidation, changes to gut microbiota, and energy drink consumption during the post-marathon recovery phase. Additionally, metabolites associated with delayed-onset muscle soreness were observed; however, the mechanisms underlying this commonly reported phenomenon remain to be elucidated. Although complete metabolic recovery of the energy-producing pathways and fuel substrate stores was attained within the 48 h recovery period, several metabolites remained perturbed throughout the 48 h recovery period and/or fluctuated again following their initial recovery to pre-marathon-related levels.

7.
Heliyon ; 9(4): e15010, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37009248

RESUMEN

Various metabolomics studies have reported increased phenylalanine serum concentrations in SARS-CoV-2 positive cases and have correlated increased phenylalanine with COVID-19 severity. In this study, we report similar results based upon metabolomics analysis of serum collected from a South African cohort of adults with confirmed COVID-19. The novelty of this study is the inclusion of HIV positive cases in the African context. We found that pre-existing HIV co-infection exacerbates the disruption of phenylalanine metabolism in COVID-19. What is lacking in literature is biological context and deeper understanding of perturbed phenylalanine metabolism in COVID-19. We delve deep into the metabolism of phenylalanine in COVID-19 and posit new insights for COVID-19 cases co-infected with HIV; namely, HIV-COVID-19 co-infected individuals do not have sufficient bioavailability of tetrahydrobiopterin (BH4). Hence, we identify BH4 as a potential supplement to alleviate/lessen COVID-19 symptoms.

8.
STAR Protoc ; 4(2): 102181, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36961819

RESUMEN

Purine and pyrimidine disorders are often difficult to diagnose. Here, we present a 1H-NMR analysis protocol for the quantification of purines and pyrimidines in urine to diagnose associated disorders. We describe steps for pH adjustment, sample preparation, and 1H-NMR analysis and data analysis. The use of 1H-NMR requires a relatively small sample volume (1 mL) and minimal sample preparation. Analysis time produces accurate and reproducible data within 2 h.

9.
Front Neurol ; 13: 804838, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386409

RESUMEN

Mycobacterium tuberculosis infection, which claims hundreds of thousands of lives each year, is typically characterized by the formation of tuberculous granulomas - the histopathological hallmark of tuberculosis (TB). Our knowledge of granulomas, which comprise a biologically diverse body of pro- and anti-inflammatory cells from the host immune responses, is based mainly upon examination of lungs, in both human and animal studies, but little on their counterparts from other organs of the TB patient such as the brain. The biological heterogeneity of TB granulomas has led to their diverse, relatively uncoordinated, categorization, which is summarized here. However, there is a pressing need to elucidate more fully the phenotype of the granulomas from infected patients. Newly emerging studies at the protein (proteomics) and metabolite (metabolomics) levels have the potential to achieve this. In this review we summarize the diverse nature of TB granulomas based upon the literature, and amplify these accounts by reporting on the relatively few, emerging proteomics and metabolomics studies on TB granulomas. Metabolites (for example, trimethylamine-oxide) and proteins (such as the peptide PKAp) associated with TB granulomas, and knowledge of their localizations, help us to understand the resultant phenotype. Nevertheless, more multidisciplinary 'omics studies, especially in human subjects, are required to contribute toward ushering in a new era of understanding of TB granulomas - both at the site of infection, and on a systemic level.

10.
Viruses ; 13(12)2021 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-34960812

RESUMEN

HIV-1 is known for its complex interaction with the dysregulated immune system and is responsible for the development of neurocognitive deficits and neurodevelopmental delays in pediatric HIV populations. Considering that HIV-1-induced immune dysregulation and its association with neurodevelopmental and neurocognitive impairments in pediatric populations are not well understood, we conducted a scoping review on this topic. The study aimed to systematically review the association of blood and cerebrospinal fluid (CSF) immune markers with neurocognitive deficits and neurodevelopmental delays in pediatric HIV populations. PubMed, Scopus, and Web of Science databases were searched using a search protocol designed specifically for this study. Studies were selected based on a set eligibility criterion. Titles, abstracts, and full texts were assessed by two independent reviewers. Data from the selected studies were extracted and analyzed by two independent reviewers. Seven studies were considered eligible for use in this context, which included four cross-sectional and three longitudinal studies. An average of 130 (±70.61) children living with HIV, 138 (±65.37) children exposed to HIV but uninfected and 90 (±86.66) HIV-negative participants were included across the seven studies. Results indicate that blood and CSF immune markers are associated with neurocognitive development/performance in pediatric HIV populations. Only seven studies met the inclusion criteria, therefore, these limited the number of significant conclusions which could have been made by using such an approach. All considered, the evidence suggests that immune dysregulation, as in the case of adult HIV populations, also has a significant association with neurocognitive performance in pediatric HIV populations.


Asunto(s)
Infecciones por VIH/inmunología , Trastornos Neurocognitivos/etiología , Trastornos del Neurodesarrollo/etiología , Factores de Edad , Fármacos Anti-VIH/uso terapéutico , Recuento de Linfocito CD4 , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , VIH-1/clasificación , Humanos , Sistema Inmunológico/fisiología
11.
Metabolites ; 11(10)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34677371

RESUMEN

Although physical activity is a health-promoting, popular global pastime, regular engagement in strenuous exercises, such as long-distance endurance running races, has been associated with a variety of detrimental physiological and immunological health effects. The resulting altered physiological state has previously been associated with fluctuations in various key metabolite concentrations; however, limited literature exists pertaining to the global/holistic metabolic changes that are induced by such. This investigation subsequently aims at elucidating the metabolic changes induced by a marathon by employing an untargeted proton nuclear magnetic resonance (1H-NMR) spectrometry metabolomics approach. A principal component analysis (PCA) plot revealed a natural differentiation between pre- and post-marathon metabolic profiles of the 30-athlete cohort, where 17 metabolite fluctuations were deemed to be statistically significant. These included reduced concentrations of various amino acids (AA) along with elevated concentrations of ketone bodies, glycolysis, tricarboxylic acid (TCA) cycle, and AA catabolism intermediates. Moreover, elevated concentrations of creatinine and creatine in the post-marathon group supports previous findings of marathon-induced muscle damage. Collectively, the results of this investigation characterize the strenuous metabolic load induced by a marathon and the consequential regulation of main energy-producing pathways to accommodate this, and a better description of the cause of the physiological changes seen after the completion of a marathon.

12.
Metabolites ; 11(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34677373

RESUMEN

Direct injury of mitochondrial respiratory chain (RC) complex I by Ndufs4 subunit mutations results in complex I deficiency (CID) and a progressive encephalomyopathy, known as Leigh syndrome. While mitochondrial, cytosolic and multi-organelle pathways are known to be involved in the neuromuscular LS pathogenesis, compartment-specific metabolomics has, to date, not been applied to murine models of CID. We thus hypothesized that sub-cellular metabolomics would be able to contribute organelle-specific insights to known Ndufs4 metabolic perturbations. To that end, whole brains and skeletal muscle from late-stage Ndufs4 mice and age/sex-matched controls were harvested for mitochondrial and cytosolic isolation. Untargeted 1H-NMR and semi-targeted LC-MS/MS metabolomics was applied to the resulting cell fractions, whereafter important variables (VIPs) were selected by univariate statistics. A predominant increase in multiple targeted amino acids was observed in whole-brain samples, with a more prominent effect at the mitochondrial level. Similar pathways were implicated in the muscle tissue, showing a greater depletion of core metabolites with a compartment-specific distribution, however. The altered metabolites expectedly implicate altered redox homeostasis, alternate RC fueling, one-carbon metabolism, urea cycling and dysregulated proteostasis to different degrees in the analyzed tissues. A first application of EDTA-chelated magnesium and calcium measurement by NMR also revealed tissue- and compartment-specific alterations, implicating stress response-related calcium redistribution between neural cell compartments, as well as whole-cell muscle magnesium depletion. Altogether, these results confirm the ability of compartment-specific metabolomics to capture known alterations related to Ndufs4 KO and CID while proving its worth in elucidating metabolic compartmentalization in said pathways that went undetected in the diluted whole-cell samples previously studied.

13.
Metabolites ; 11(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34677376

RESUMEN

From the World Health Organization's global TB report for 2020, it is estimated that in 2019 at least 80,000 children (a particularly vulnerable population) developed tuberculous meningitis (TBM)-an invariably fatal disease if untreated-although this is likely an underestimate. As our latest technologies have evolved-with the unprecedented development of the various "omics" disciplines-a mountain of new data on infectious diseases have been created. However, our knowledge and understanding of infectious diseases are still trying to keep pace. Metabolites offer much biological information, but the insights they permit can be difficult to derive. This review summarizes current metabolomics studies on cerebrospinal fluid (CSF) from TBM cases and collates the metabolic data reported. Collectively, CSF metabolomics studies have identified five classes of metabolites that characterize TBM: amino acids, organic acids, nucleotides, carbohydrates, and "other". Taken holistically, the information given in this review serves to promote the mechanistic action of hypothesis generation that will drive and direct future studies on TBM.

14.
Metabolomics ; 17(1): 10, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33438095

RESUMEN

INTRODUCTION: The m.3243A > G mitochondrial DNA mutation is one of the most common mitochondrial disease-causing mutations, with a carrier rate as high as 1:400. This point mutation affects the MT-TL1 gene, ultimately affecting the oxidative phosphorylation system and the cell's energy production. Strikingly, the m.3243A > G mutation is associated with different phenotypes, including mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), maternally inherited diabetes and deafness (MIDD) and myopathy. OBJECTIVES: We investigated urine metabolomes of MELAS, MIDD and myopathy patients in order to identify affected metabolic pathways and possible treatment options. METHODS: A multiplatform metabolomics approach was used to comprehensively analyze the metabolome and compare metabolic profiles of different phenotypes caused by the m.3243A > G mutation. Our analytical array consisted of NMR spectroscopy, LC-MS/MS and GC-TOF-MS. RESULTS: The investigation revealed phenotypic specific metabolic perturbations, as well as metabolic similarities between the different phenotypes. We show that glucose metabolism is highly disturbed in the MIDD phenotype, but not in MELAS or myopathy, remodeled fatty acid oxidation is characteristic of the MELAS patients, while one-carbon metabolism is strongly modified in both MELAS and MIDD, but not in the myopathy group. Lastly we identified increased creatine in the urine of the myopathy patients, but not in MELAS or MIDD. CONCLUSION: We conclude by giving novel insight on the phenotypes of the m.3243A > G mutation from a metabolomics point of view. Directives are also given for future investigations that could lead to better treatment options for patients suffering from this debilitating disease.


Asunto(s)
Sordera/genética , Sordera/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Mutación , Fenotipo , Cromatografía Liquida , Sordera/diagnóstico , Diabetes Mellitus Tipo 2/diagnóstico , Predisposición Genética a la Enfermedad , Humanos , Síndrome MELAS/diagnóstico , Espectroscopía de Resonancia Magnética , Metaboloma , Metabolómica/métodos , Enfermedades Mitocondriales/diagnóstico , Enfermedades Musculares/diagnóstico , Espectrometría de Masas en Tándem
15.
Biochem Cell Biol ; 99(4): 465-475, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33449856

RESUMEN

Biologically important ions such as Ca, K, Mg, Fe, and Zn play major roles in numerous biological processes, and their homeostatic balance is necessary for the maintenance of cellular activities. Sudden and severe loss in homeostasis of just one biologically important ion can cause a cascade of negative effects. The ability to quickly, accurately, and reliably quantify biologically important ions in samples of human bio-fluids is something that has been sorely lacking within the field of metabolomics. 1H-NMR spectra. The foundation of our investigation was the a-priori knowledge that free ethylenediaminetetraacetic acid (EDTA) produces two clear single peaks on 1H-NMR spectra, and that EDTA chelated to different ions produces unique 1H-NMR spectral patterns due to 3D conformational changes in the chemical structure of chelated-EDTA and varying degrees of electronegativity. The aim of this study was to develop and test a 1H-NMR-based method, with application specifically to the field of metabolomics, to quantify biologically important ions within the physiological pH range of 6.50-7.50 using EDTA as a chelating agent. Our method produced linear, accurate, precise, and repeatable results for Ca, Mg, and Zn; however, K and Fe did not chelate with EDTA.


Asunto(s)
Quelantes/química , Ácido Edético/química , Metabolómica/métodos , Metales/química , Espectroscopía de Protones por Resonancia Magnética/métodos , Quelantes/metabolismo , Ácido Edético/metabolismo , Humanos , Metales/metabolismo
16.
J Infect ; 81(5): 743-752, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32712206

RESUMEN

OBJECTIVE: To better characterize the cerebrospinal fluid (CSF) metabolic profile of tuberculous meningitis (TBM) cases using a South African paediatric cohort. METHODS: 1H NMR metabolomics was used to analyse the CSF of a South African paediatric cohort. Univariate and multivariate statistical analyses were performed to compare a homogeneous control group with a well-defined TBM group. RESULTS: Twenty metabolites were identified to discriminate TBM cases from controls. As expected, reduced glucose and elevated lactate were the dominating discriminators. A closer investigation of the CSF metabolic profile yielded 18 metabolites of statistical significance. Ten metabolites (acetate, alanine, choline, citrate, creatinine, isoleucine, lysine, myo-inositol, pyruvate and valine) overlapped with two other prior investigations. Eight metabolites (2-hydroxybutyrate, carnitine, creatine, creatine phosphate, glutamate, glutamine, guanidinoacetate and proline) were unique to our paediatric TBM cohort. CONCLUSIONS: Through strict exclusion criteria, quality control checks and data filtering, eight unique CSF metabolites associated with TBM were identified for the first time and linked to: uncontrolled glucose metabolism, upregulated proline and creatine metabolism, detoxification and disrupted glutamate-glutamine cycle in the TBM samples. Associated with oxidative stress and chronic neuroinflammation, our findings collectively imply destabilization, and hence increased permeability, of the blood-brain barrier in the TBM cases.


Asunto(s)
Tuberculosis Meníngea , Niño , Estudios de Cohortes , Humanos , Metabolómica , Espectroscopía de Protones por Resonancia Magnética , Tuberculosis Meníngea/diagnóstico
17.
Front Neurosci ; 14: 460, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32499676
18.
Front Neurosci ; 14: 296, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32372900

RESUMEN

A new paradigm in neuroscience has recently emerged - the brain-gut axis (BGA). The contemporary focus in this paradigm has been gut → brain ("bottom-up"), in which the gut-microbiome, and its perturbations, affects one's psychological state-of-mind and behavior, and is pivotal in neurodegenerative disorders. The emerging brain → gut ("top-down") concept, the subject of this review, proposes that dysfunctional brain health can alter the gut-microbiome. Feedback of this alternative bidirectional highway subsequently aggravates the neurological pathology. This paradigm shift, however, focuses upon non-communicable neurological diseases (progressive neuroinflammation). What of infectious diseases, in which pathogenic bacteria penetrate the blood-brain barrier and interact with the brain, and what is this effect on the BGA in bacterial infection(s) that cause chronic neuroinflammation? Persistent immune activity in the CNS due to chronic neuroinflammation can lead to irreversible neurodegeneration and neuronal death. The properties of cerebrospinal fluid (CSF), such as immunological markers, are used to diagnose brain disorders. But what of metabolic markers for such purposes? If a BGA exists, then chronic CNS bacterial infection(s) should theoretically be reflected in the urine. The premise here is that chronic CNS bacterial infection(s) will affect the gut-microbiome and that perturbed metabolism in both the CNS and gut will release metabolites into the blood that are filtered (kidneys) and excreted in the urine. Here we assess the literature on the effects of chronic neuroinflammatory diseases on the gut-microbiome caused by bacterial infection(s) of the CNS, in the context of information attained via metabolomics-based studies of urine. Furthermore, we take a severe chronic neuroinflammatory infectious disease - tuberculous meningitis (TBM), caused by Mycobacterium tuberculosis, and examine three previously validated CSF immunological biomarkers - vascular endothelial growth factor, interferon-gamma and myeloperoxidase - in terms of the expected changes in normal brain metabolism. We then model the downstream metabolic effects expected, predicting pivotal altered metabolic pathways that would be reflected in the urinary profiles of TBM subjects. Our cascading metabolic model should be adjustable to account for other types of CNS bacterial infection(s) associated with chronic neuroinflammation, typically prevalent, and difficult to distinguish from TBM, in the resource-constrained settings of poor communities.

19.
Metabolomics ; 15(12): 158, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776682

RESUMEN

INTRODUCTION: Manifestations of fatigue range from chronic fatigue up to a severe syndrome and myalgic encephalomyelitis. Fatigue grossly affects the functional status and quality of life of affected individuals, prompting the World Health Organization to recognize it as a chronic non-communicable condition. OBJECTIVES: Here, we explore the potential of urinary metabolite information to complement clinical criteria of fatigue, providing an avenue towards an objective measure of fatigue in patients presenting with the full spectrum of fatigue levels. METHODS: The experimental group consisted of 578 chronic fatigue female patients. The measurement design was composed of (1) existing clinical fatigue scales, (2) a hepatic detoxification challenge test, and (3) untargeted proton nuclear magnetic resonance (1H-NMR) procedure to generate metabolomics data. Data analysed via an in-house Matlab script that combines functions from a Statistics and a PLS Toolbox. RESULTS: Multivariate analysis of the original 459 profiled 1H-NMR bins for the low (control) and high (patient) fatigue groups indicated complete separation following the detoxification experimental challenge. Important bins identified from the 1H-NMR spectra provided quantitative metabolite information on the detoxification challenge for the fatigue groups. CONCLUSIONS: Untargeted 1H-NMR metabolomics proved its applicability as a global profiling tool to reveal the impact of toxicological interventions in chronic fatigue patients. No clear potential biomarker emerged from this study, but the quantitative profile of the phase II biotransformation products provide a practical visible effect directing to up-regulation of crucial phase II enzyme systems in the high fatigue group in response to a high xenobiotic-load.


Asunto(s)
Síndrome de Fatiga Crónica/metabolismo , Fatiga/metabolismo , Adulto , Biomarcadores/orina , Fatiga/orina , Síndrome de Fatiga Crónica/orina , Femenino , Humanos , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Persona de Mediana Edad , Análisis Multivariante , Calidad de Vida
20.
R Soc Open Sci ; 6(5): 190205, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31218060

RESUMEN

Gold nanoparticles provide a user-friendly and efficient surface for immobilization of enzymes and proteins. In this paper, we present a novel approach for enzyme bioconjugation to gold nanostars (AuNSs). AuNSs were modified with l-cysteine (Cys) and covalently bound to N-hydroxysulfosuccinimide (sulfo-NHS) activated intermediate glucose oxidase (GOx) to fabricate a stable and sensitive AuNSs-Cys-GOx bioconjugate complex. Such a strategy has the potential for increased attachment affinity without protein adsorption onto the AuNSs surface. Good dispersity in buffer suspension was observed, as well as stability in high ionic environments. Using the AuNSs-Cys-GOx bioconjugates showed greater sensitivity in the measuring of low concentrations of glucose based on plasmonic and colorimetric detection. Such a novel approach for enzyme immobilization can lead to AuNSs-Cys-GOx bioconjugate complexes that can be used as catalytic nanodevices in nanobiosensors based on oxidases in biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...